8.2 Ïðèêëàäè
8.2.1. Âèçíà÷èòè íàéìåíøèé ÷àñ çàêðèòòÿ çàñóâêè tç = tmin, ùîá ï³äâèùåííÿ òèñêó â ê³íö³ òðóáîïðîâîäó, ÿêå ïîêëèêàíå ã³äðàâë³÷íèì óäàðîì áóëî íå á³ëüøå Âîäà âèò³êຠ³ç ðåçåðâóàðà ïî ãîðèçîíòàëüíîìó íîâîìó ñòàëåâîìó òðóáîïðîâîäó äîâæèíîþ l, ç âíóòð³øí³ì ä³àìåòðîì d ³ òîâùèíîþ ñò³íêè d. гâåíü âîäè â ðåçåðâóàð³ íàä öåíòðîì òðóáè Í. Òåìïåðàòóðà âîäè t = 20îÑ, êîåô³ö³ºíò òåðòÿ çà äîâæèíîþ òðóáè l. ×îìó áóäå äîð³âíþâàòè ï³äâèùåííÿ òèñêó íà âèïàäîê ìèòòºâîãî çàêðèòòÿ çàñóâêè â òðóáîïðîâîä³?
Ðîçâ’ÿçîê
Íà ðèñ. 8.3 ïðåäñòàâëåíà ðîçðàõóíêîâà ñõåìà: 0-0 – ïëîùèíà ïîð³âíÿííÿ; 1-1 –³ 2-2 – ïåðåð³çè çà ðóõîì âîäè.
гâíÿííÿ Áåðíóë³ äëÿ ö³ëîãî ïîòîêó âÿçêî¿ ð³äèíè
Çã³äíî ðèñ. 8.3:
Òîä³ ð³âíÿííÿ Áåðíóë³ ïðèéìຠâèãëÿä ïðè a2 = 1
.
Âòðàòè íàïîðó ì³æ ïåðåð³çàìè 1-1 ³ 2-2
äå V – ñåðåäíÿ øâèäê³ñòü â òðóá³, ì/ñ;
– êîåô³ö³ºíò ì³ñöåâîãî îïîðó âõîäó,
Ðîçâÿçóºìî ð³âíÿííÿ Áåðíóë³ â³äíîñíî V2
Äëÿ íåïðÿìîãî ã³äðàâë³÷íîãî óäàðó (t3 > T)
äå V – ñåðåäíÿ øâèäê³ñòü âîäè â òðóá³, V = V2 = 2,692 ì/ñ;
à – øâèäê³ñòü ðîçïîâñþäæåííÿ óäàðíî¿ õâèë³ â òðóáîïðîâîä³, ì/ñ;
äå Åâ – ìîäóëü îá’ºìíî¿ ïðóæíîñò³ âîäè, ïðè Ïà (òàáë. À.1.2);
Åî – ìîäóëü îá’ºìíî¿ ïðóæíîñò³ ìàòåð³àëó ñò³íîê òðóáè, ñòàëü (òàáë. À.1.6);
Ò – ïåð³îä ã³äðàâë³÷íîãî óäàðó,
Ïðèéìàºìî ³ âèçíà÷àºìî ÷àñ çàêðèòòÿ çàñóâêè
 ðåçóëüòàò³ ìèòòºâîãî çàêðèòòÿ çàñóâêè ï³äâèùåííÿ òèñêó ñêëàäàòèìå
.
Îòæå, ó âèïàäêó ìèòòºâîãî çàêðèòòÿ çàñóâêè ï³äâèùåííÿ òèñêó â n ðàç³â ïåðåâèùóº äîïóñòèìå
.
8.2.2. Ñèñòåìà ñêëàäàºòüñÿ ç äâîõ ïîñë³äîâíî çºäíàíèõ ñòàëåâèõ òðóáîïðîâîä³â (ä³àìåòðè òðóáîïðîâîä³â: d1 = 200 ìì, d2 = 100 ìì; äîâæèíè: l1= 100 ì, l2 = 200 ì) ³ çàñóâêè, ÿêà âñòàíîâëåíà â ê³íö³ ñèñòåìè (ðèñ.8.4). Âèòðàòà âîäè Òîâùèíà ñò³íîê òðóáîïðîâîäà òåìïåðàòóðà âîäè t = 20îÑ.
1. Âèçíà÷èòè ï³äâèùåííÿ òèñêó ïåðåä çàñóâêîþ, ÿêùî ¿¿ çàêðèòè çà ÷àñ
2. Âèçíà÷èòè íàéìåíøèé ÷àñ çàêðèòòÿ çàñóâêè, ÿêèé âèêëþ÷ຠïðÿìèé ã³äðàâë³÷íèé óäàð.
Ðîçâ’ÿçîê
Ñïî÷àòêó ãðàô³÷íî ïðåäñòàâòå ðîçðàõóíêîâó ñõåìó.
Íàéìåíøèé ÷àñ çàêðèòòÿ çàñóâêè, ÿêèé íåîáõ³äíèé äëÿ ïîïåðåäæåííÿ ïðÿìîãî ã³äðàâë³÷íîãî óäàðó, çíàõîäèìî çà ôîðìóëîþ
.
Øâèäê³ñòü óäàðíî¿ õâèë³ âèçíà÷àºòüñÿ çà ôîðìóëîþ
Äëÿ ïåðøîãî òðóáîïðîâîäà
äëÿ äðóãîãî òðóáîïðîâîäà
Òîä³
Çàäàíèé ÷àñ çàêðèòòÿ çàñóâêè t ìåíøèé, í³æ ì³í³ìàëüíèé ÷àñ çàêðèòòÿ tm³n, ÿêèé íåîáõ³äíèé äëÿ ïîïåðåäæåííÿ ïðÿìîãî óäàðó.
Òàêèì ÷èíîì, áóäå ñïîñòåð³ãàòèñü ïðÿìèé ã³äðàâë³÷íèé óäàð, ïðè ÿêîìó ï³äâèùåííÿ òèñêó ìîæíà âèçíà÷èòè çà ôîðìóëîþ
.
Øâèäê³ñòü ðóõó âîäè â òðóáîïðîâîä³ äî çàêðèòòÿ çàñóâêè
Îòæå
.
8.2.3. Âèçíà÷èòè ï³äâèùåííÿ òèñêó , ùî âèíèêຠïðè ðàïòîâîìó çàêðèòò³ çàñóâêè íà âîäîïðîâ³äí³é òðóá³, ÿêùî øâèäê³ñòü ðóõó âîäè 1 ì/ñ. Øâèäê³ñòü ðîçïîâñþäæåííÿ óäàðíî¿ õâèë³ ñ ïðèéíÿòè ð³âí³é 1000 ì/ñ.
Ðîçâ’ÿçîê
Äëÿ âèçíà÷åííÿ ìèòòºâîãî ï³äâèùåííÿ òèñêó ñêîðèñòàºìîñÿ ôîðìóëîþ (8.3)
.
8.2.4.  ñòàëåâ³é âîäîïðîâ³äí³é òðóá³ ä³àìåòðîì d = 0,5 ì ³ òîâùèíîþ ñò³íîê âîäà ðóõàºòüñÿ ç³ øâèäê³ñòþ v = 1 ì/ñ. Âèçíà÷èòè âåëè÷èíó ï³äâèùåííÿ òèñêó ï³ñëÿ ìèòòºâîãî ïåðåêðèòòÿ òðóáè.
Ðîçâ’ÿçîê
Øâèäê³ñòü ðîçïîâñþäæåííÿ óäàðíî¿ õâèë³ âèçíà÷àºìî çà ôîðìóëîþ
Çíà÷åííÿ ìîäóëÿ ïðóæíîñò³ âîäè – (äèâ. òàáë. A.1.2), ìîäóëÿ ïðóæíîñò³ ìàòåð³àëó ñò³íîê òðóáè – (äèâ. òàáë. A.1.6), (äèâ. òàáë. A.1.12)
Âåëè÷èíó ï³äâèùåííÿ òèñêó âèçíà÷àºìî çà ôîðìóëîþ