1 ОСНОВНІ ПОЛОЖЕННЯ І НАПРЯМИ РОЗВИТКУ МІКРОЕЛЕКТРОНІКИ

 

1.1 Етапи розвитку електроніки

 

Електроніка (electronic) – наука про взаємодію електронів з електромагнітними полями і методи створення електронних приладів, пристроїв, в яких ця взаємодія використовується для перетворення електромагнітної енергії, передавання, оброблення і зберігання інформації.

Практичними завданнями електроніки є: розроблення електронних приладів і пристроїв, що виконують різні функції в системах перетворення і передавання інформації, в системах управління, в обчислювальній техніці, а також в енергетичних пристроях; розроблення наукових основ електронних приладів технології, що використовує електронні і іонні процеси.

На базі досягнень електроніки розвивається промисловість, яка випускає електронну апаратуру для різних видів зв'язку, автоматики, телебачення, радіолокації, обчислювальної техніки, систем управління технологічними процесами, світлотехніки, інфрачервоної техніки, рентгенотехніки і ін.

Головними етапами розвитку електроніки є вакуумна (vacuum) твердотільна (solid) і квантова (quantum) електроніка. Кожний етап поділяється на ряд розділів і напрямів. Розділ об'єднує комплекси однорідних фізико-хімічних явищ і процесів, які мають фундаментальне значення для розроблення багатьох класів електронних приладів даного етапу. Напрям охоплює методи конструювання і розрахунку електронних приладів, подібних за принципами дії або виконуваними функціями.

Найшвидкими темпами розвивається твердотільна електроніка. Твердотільні електронні прилади пройшли шлях розвитку від довгохвильових транзисторів і детекторів НВЧ до великих і надвеликих інтегральних мікросхем, що є базою сучасної обчислювальної техніки і її численних застосувань. На цьому шляху довелося долати труднощі як принципового, так і технологічного характеру. Вибір і точне легування матеріалів, а також отримання конструкцій з мікронними і субмікронними розмірами викликали розвиток таких складних технологічних напрямів, як фото і електронна літографія, іонна імплантація. Створення інтегральних мікросхем і інших твердотільних приладів виявилося неможливим без отримання ряду нових напівпровідникових (semi-conductor) і діелектричних (dielectric) особливо чистих матеріалів.

Весь період розвитку елементної бази електроніки в радіо-радіоелектронній апаратурі можна поділити на чотири покоління:

а) дискретна електроніка на електровакуумних приладах; б) дискретна електроніка на напівпровідникових приладах; в) інтегральна мікроелектроніка на інтегральних мікросхемах; г) інтегральна мікроелектроніка на функціональних приладах.

У першому поколінні елементної бази електроніки роль активних елементів виконували різні електровакуумні прилади. Як пасивні елементи застосовували резистори (resistor), конденсатори (capacitor), котушки індуктивності, трансформатори, з'єднувачі, перемикачі і інші дискретні радіодеталі. Радіоелектронну апаратуру (РЕА) збирали з окремих дискретних елементів, які механічно зміцнювалися на спеціальних панелях і електрично з'єднувалися між собою дротяними провідниками за допомогою паяння або зварки. Пізніше була розроблені друкарські плати, які були надійнішими, забезпечували велику відтворюваність параметрів РЕА і відносну легкість автоматизації виробництва.

Друге покоління елементної бази електроніки з'явилося з винаходом транзисторів (transistor) в 1948 р. американськими ученими Бардіном і Браттейном. Перші транзистори були точковими, їх р-n-переходи одержували в місці контакту з напівпровідником двох заточених дротів. Проте точкові контакти були нестабільними. Цей недолік був усунений в сплавних транзисторах, отримання р-n-переходів яких засновано на взаємодії рідкої фази вплавного електрода, що містить легуючий елемент, з твердим напівпровідником. Сплавні транзистори відрізнялися великими переходами, низькою відтворюваністю параметрів і неможливістю отримання базових областей шириною менше 10 мкм. Потім у виробництво були впроваджені транзистори з дифузійними переходами, параметри яких більш відтворні, а ширина бази може бути зменшена до 0,2–0,3 мкм.

Третє покоління елементної бази електроніки – інтегральні мікросхеми– пов'язані з появою плівкової технології, яка в поєднанні з планарною технологією дала можливість в мікрооб'ємах твердого тіла виготовляти величезну кількість активних приладів.

Четверте покоління елементної бази електроніки складають функціональні мікросхеми, прилади і вузли. В структурі цих приладів важко або неможливо виділити елементи, еквівалентні традиційним дискретним компонентам (транзистори, діоди (diode), конденсатори (capacitor), резистори (resistor) і ін.). Прилади функціональної мікроелектроніки принципово відрізняються від елементів всіх попередніх поколінь. Тут проводиться інтеграція різних об'ємних і поверхневих фізичних явищ, завдяки чому може бути подоланий бар'єр конструктивної складності сучасних інтегральних мікросхем.