6.7 Імпульсні і високочастотні властивості р-п-переходу
Імпульсні властивості. Іншою вельми широкою областю застосування напівпровідникових діодів є імпульсні схеми радіоелектроніки, обчислювальної техніки і автоматики. Основним параметром, що визначає придатність діодів для цієї мети, є їх швидкодія, що характеризується тривалістю перемикання р-n-переходу з прямого зсуву на зворотний і, навпаки, із зворотного на прямий. Розглянемо якими процесами, що протікають в р-n-переході, визначається цей параметр. На рис. 6.14, а схемно показано розподіл основних і неосновних носіїв в р- і n-областях напівпровідника при рівноважному стані р-n-переходу. При поданні на діод прямого зсуву V потенціальний бар'єр переходу знижується на величину Дірки, що перейшли в n-область, і електрони, що перейшли в р-область, стають в цих областях неосновними носіями. Таким чином, під дією прямого зсуву відбувається ніби «вприскування» неосновних носіїв через межі р-n переходу у відповідні області напівпровідника. Це явище одержало назву інжекції неосновних носіїв. Дірки, інжектовані в n-область, притягують до себе електрони з об'єму цієї області, внаслідок чого концентрація електронів поблизу р-n-переходу підвищується в порівнянні з концентрацією в об'ємі (рис. 6.14, б). Негативний заряд притягуючих електронів екранує позитивний заряд надмірних дірок. Така ж картина спостерігається і в р-області: позитивний заряд притягуючих дірок екранує негативний заряд інжектованих електронів. Тому надмірні дірки і електрони, інжектовані відповідно в n- і в р-області, не створюють в них об'ємних зарядів, які своїм полем могли б перешкоджати руху неосновних носіїв в об'єм напівпровідника, що не компенсується. Переміщення цих носіїв в глиб напівпровідника здійснюється виключно шляхом дифузії, швидкість якої пропорційна градієнту концентрації дірок Рисунок 6.14 – Інжекція неосновних носіїв заряду Таким чином, при перемиканні діода в ньому протікають перехідні процеси (накопичення неосновних носіїв при прямому зсуві і розсмоктування їх при зворотному зсуві), які і обмежують його швидкодію. Оскільки ці процеси завершуються в основному житті надмірних неосновних носіїв З розглянутої картини виходить, що відносно перемикання діод поводиться як опір Як показує розрахунок, для малого змінного сигналу
де, як випливає з (6.26), CД Для дуже несиметричного р-n-переходу з Na CД = З (6.29) – (6.31) витікає, що для зменшення СД і підвищення швидкодії діодів необхідно зменшувати час життя надмірних неосновних носіїв t, легуючи n- і р-області домішкою, що створює ефективні рекомбінаційні центри. Такою домішкою є, зокрема, золото, легування яким дозволяє знизити Частотні властивості р-n-переходу. Крім дифузійної ємності, електронно-дірковий перехід має ще так звану бар'єрну або зарядну ємність, пов'язану із зміною величини об'ємного заряду р-n-переходу під впливом зовнішнього зсуву. Підвищення потеаціального бар'єра р-n-переходу при зворотному зсуві відбувається за рахунок розширення шару об'ємного заряду (рис. 6.11, д). Прямий зсув викликає приток основних носіїв до області об'ємного заряду (рис. 6.11, г), в результаті якого заряди, створені зовнішнім джерелом ЕРС на омічних контактах, переносяться до р-n-переходу і звужують його (на рис. 6.11, г звуження р-n-переходу показано штриховкою). Після встановлення стаціонарного стану практично вся напруга V спадає на р-n-переході, оскільки його опір на багато порядків вищий, ніж опір решти областей напівпровідника. Таким чином, прикладена до р-n-переходу зовнішня напруга викликає появу в перший момент часу імпульсу струму в зовнішньому колі, що приводить кінець кінцем до збільшення або зменшення об'ємного заряду р-n-переходу. Тому перехід поводиться як ємність. Її називають бар'єрною, або зарядною ємністю, оскільки вона пов'язана із зміною потенціального бар'єра р-n-переходу. При поданні на перехід зворотного зсуву бар'єрна ємність заряджається, при подачі прямого зсуву – розряджається. З рис. 6.11, г, д видно, що плоский р-n-перехід подібний плоскому конденсатору. Тому величину бар'єрної ємності можна обчислювати за формулою плоского конденсатора де Для плавних р-n-переходів Сб = S Цими формулами зручно користуватися для малого змінного сигналу, накладеного на постійний зсув V. Таким чином, діод може бути поданий такою спрощеною еквівалентною схемою: паралельно нелінійному активному опору р-n-переходу (рис. 6.15). Для з'ясування особливостей роботи діода на високих частотах проаналізуємо детальніше цю схему. Активний опір р-n-переходу при малому змінному сигналі низької частоти визначається співвідношенням (6.28). При цьому під низькою частотою розуміється така частота сигналу У міру підвищення частоти сигналу У негативний півперіод сигналу висока концентрація неосновних носіїв, що не встигли продефундувавти в глибину пасивних областей і локалізованих в тонкому шарі біля меж р-n-переходу, повинна також приводити до збільшення зворотного струму, а отже, до зменшення активного опору зворотно зміщеного переходу. Таким чином, підвищення частоти сигналу, що подається на р-n-перехід, повинно приводити до зменшення активного опору
Для низьких частот ( Провідності, властиві опору
Як бачимо, вони рівні між собою: Оскільки то активний опір р-n-переходу на високих частотах не залежить від часу життя інжектованих носіїв і зменшується обернено пропорційно
Аналогічно поводиться і опір дифузійної ємності СД: На рис. 6.16 схематично подана залежність Зменшення на високих частотах опору р-n-переходу призводить до того, що велика частина напруги, прикладеної до діода, спадає не на переході, а на опорі пасивних областей діода. На частотах, на яких опір р-n-переходу стає набагато меншим р-n-переходу визначається бар'єрною ємністю
З (6.42) витікає, що для збільшення граничної частоти роботи діода необхідно зменшувати До збільшення сильнішому легуванні – тунельного діода, вже непридатного для детектування.
|