Попередня сторінка          Зміст           Наступна сторінка          Електронні посібники ВНТУ

 

 

1.7.3 Переведення правильних дробів з однієї позиційної системи числення в іншу

 

Нехай задана дробова частина  числа  (правильний дріб) у довільній позиційній системі числення з основою р:

і її необхідно перевести в нову систему числення з основою r, тобто звести до такого вигляду:

 
(1.17)

де  – похибка округлення ( < 1).

Цифри  представляють собою  цілу частину, яка утворюється при множенні  на нову основу , задану в позиційній системі числення з основою р,  дробової частини  числа  і наступних дробових частин  аж до отримання  заданої кількості цифр із врахуванням необхідної точності   згідно з наступною схемою:

 

...

(1.18)

Доведення правильності такого алгоритму теж очевидне. Із (1.18) отримаємо:

З урахуванням того, що

для  можна отримати

 

Тобто цілі частини від множення згідно з алгоритмом (1.18) є цифрами представлення дробової частини  числа  у позиційній системі числення з основою , що і необхідно було довести.

Правило переведення  правильних дробів із однієї позиційної системи числення в іншу формулюється таким чином: щоб перевести правильний дріб із однієї позиційної системи числення в іншу, необхідно початкове число послідовно множити на основу нової системи числення, записану в початковій системі числення. Число у новій системі числення записується із цілих частин від множення, починаючи із першої. Процедуру необхідно продовжувати до отримання заданої точності.

Як видно з останнього виразу, на відміну від цілих чисел, точне переведення можливе не для всіх правильних дробів. Похибка при переведенні  визначається одиницею молодшого розряду запису числа в  системі числення з основою 

Приклад. Перевести правильний дріб  0,357 із десяткової системи числення у двійкову, вісімкову і шістнадцяткову системи числення.

Процедура переведення згідно із розглянутим алгоритмом представлена у табл. 1.8.

Таблиця 1.8 ‒ Основа системи числення

Ціла частина

Дробова частина

Ціла частина

Дробова частина

Ціла частина

Дробова частина

0

 

0

 

1

 

0

 

1

 

1

 

0

 

1

 

1

 

0

 

1

357

2

714

2

428

2

856

2

712

2

424

2

848

2

696

2

392

2

78

2

568

0

 

2

 

6

 

6

 

6

357

8

856

8

848

8

784

8

272

0

 

5

 

4

 

4

 

 

357

16

712

16

272

16

352

 

 

 

Із врахуванням результатів табл. 1.8,  отримаємо:

0,35710 = 0,01011011012 = 0,26668 = 0,54416.